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We consider the large-time behaviour of the disturbances associated with an initial 
acceleration of a body in or near a free surface. As a canonical problem, we study 
the case of a body starting impulsively from rest to a constant velocity U.  For a 
constant-strength translating point source (or dipole) started impulsively, it is known 
that the unsteady part of the Green function oscillates at the critical frequency 
o,=g/4U (g is the gravitational acceleration) with an amplitude that decays with 
time, t, as t- l j2 and t-' for t >> 1 in two (Havelock 1949) and three (Wehausen 1944) 
dimensions respectively. These classical results turn out to be non-realistic in that for 
an actual body, the associated source strengths are in general time dependent and 
a priori unknown, and must together satisfy the kinematic condition on the body 
boundary. We consider such an initial-boundary-value problem using a transient 
wave-source distribution on the body surface. Through asymptotic analyses, the 
unsteady behaviour of the solution at large time is obtained explicitly. Specifically, 
we show that for a general class of bodies satisfying a simple geometric condition 
(r # 0), the decay rate of the transient oscillations (at frequency w,) in the wave 
resistance and velocity potential is an order of magnitude faster: as tP3I2 and tP2, 
as t + 00, in two and three dimensions respectively. For body geometries satisfying 
r = 0, for which the single source is a special case, the classical Green function 
results are recovered. These results are confirmed by an analysis in the frequency 
domain and substantiated by direct time-domain numerical simulations. 

1. Introduction 
The question of how rapidly transients associated with the abrupt motions of a 

floating body decay in time is one of fundamental theoretical interest as well as 
practical importance. The rates at which oscillations vanish and measurements are 
taken are of major concern in model tests especially for unsteady and local effects. The 
question of the behaviour of transients also arises in almost all numerical simulations 
in the time domain since it directly affects our ability to extract steady-state predictions 
for wave-resistance problems or to obtain meaningful results for general seakeeping 
computations (e.g. Beck & Magee 1990; Lin & Yue 1990; Bingham 1994). 

The canonical problem is that of a body in or near a free surface accelerating 
abruptly from rest to a constant speed U .  The main interest is the asymptotic 
behaviour of the transient solution (such as wave resistance or wave elevation) for 
large time. Despite its importance, the problem appears to have been addressed 
only for the idealized case of a single translating source of known strength. Havelock 
(1949) considered the two-dimensional problem of the wave resistance of a submerged 
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circular cylinder started impulsively from rest. By approximating the body as a point 
dipole of constant strength, he derived a closed-form solution for the wave resistance. 
The key finding is that for a given forward speed U ,  the resistance oscillates about the 
steady value with frequency w,=g/4U, where g is the gravitational acceleration, and 
the oscillation decays at a rate of t-'f2 as t -+ co. This result was extended to three 
dimensions by Wehausen (1964) who considered a constant source and obtained that 
the unsteady oscillatory part of the resistance vanishes like t-' for t >> 1. 

The question remains as to whether these results are valid for the transient resistance 
of an actual body. Representing the solution by a wave-source distribution on the 
body surface, it is clear that the source strengths are in general unsteady and 'coupled 
in time through the evolving history of the waves. One observes also that the sources 
must combine to satisfy a simple condition of no flux on the body surface at all times. 

It is not surprising that the time-domain problem of the asymptotic decay of the 
(0,) oscillatory solution is in fact related to the frequency-domain seakeeping problem 
in the neighbourhood of this frequency, the so-called critical frequency corresponding 
to r=UcoC/g=i.  This latter problem was considered by Liu & Yue (1993, hereinafter 
denoted as LY) for the case of a general body. The time-domain analysis for the long- 
time behaviour is, however, appreciably more complicated due to the convolution of 
the unknown source strength evolutions, while the problem is effectively uncoupled 
in the frequency domain for each frequency. 

In this work, we start with the initial-boundary-value problem for the velocity 
potential ($2) and construct its solution in terms of a distribution on the body of 
transient wave sources ($4). The time-varying translating wave-source Green function 
is known from classical theory (Wehausen & Laitone 1960). The evolution of the 
unknown source distribution is then governed by a time-dependent integral equation 
resulting from satisfaction of the body boundary condition. Taking into account the 
large-time asymptotic behaviour of the Green function ($3), the time dependencies of 
the source distribution as well as the velocity potential are obtained from the integral 
equation. For a general class of bodies satisfying a simple geometric condition (r # 0, 
see (4.21)), the analysis shows that the asymptotic behaviour of the transient solution 
is o(t-1, t-3/2e-lWt) and o(t-2, t-2e-Wt ), as t + co, for two- and three-dimensional 
bodies respectively. If r = 0, the decay rate is an order-of-magnitude slower and 
is identical to that for a single constant-strength wave source. For simplicity, the 
analysis in $4 is carried out in detail for a two-dimensional body only. The extension 
to three dimensions follows in a straightforward manner and is outlined at the end 
of $4. 

These results in $4 can be anticipated from the associated seakeeping problem in the 
frequency domain. In that problem, the solution for a single source (the oscillatory- 
strength constant-forward-speed Green function) is singular at the critical frequency 
corresponding to z=Uw,/g=$ (Haskind 1954). This is consistent with the decay 
rates of the w, oscillations of the time-domain Green functions. LY performed an 
asymptotic analysis in the neighbourhood of z = for a body, and they showed that 
the solution is bounded at z=$ for a general class of geometries satisfying the same 
condition (r # 0). By considering Fourier transforms between the frequency and time 
domains, the present results are recovered in $5 from the known frequency-domain 
behaviour. 

The frequency domain perhaps offers an easier argument for the fundamental 
difference between the solution for a body and the single Green function. That a 
finite solution for a body exists at z = i  can be reasoned as follows. The induced 
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velocity at any point s, due to a source distribution a(s') on the body, contains a free- 
surface part V,(s) which depends on the non-Rankine portion of the Green function. 
For 6* = 14t - 11 << 1, one can show from the asymptotics that V,(s) - a,f(s) ,  where 
a, is associated with a Kochin function and f ( s )  is a property of the geometry (and 
frequency) but is independent of g. As 6 -, 0, f(s) becomes unbounded (everywhere) 
like 6-'. In order for a body boundary condition (with finite forcing) to be satisfied 
as 6 + 0, it follows that a, - O(6) for finite 0. Based on source-distribution 
boundary-integral equations on the body, LY derived the solution of a, which can be 
formally expressed as a,/G=F/T as 6 + 0 (see LY's equations (3.6) and (4.4)), where 
F depends on the forcing on the body and r is a function of the body geometry 
(and frequency) only. For a finite forcing, F=0(1) in general and thus a,/6 =0(1) if 
r # 0. Otherwise, the solution is singular. 

Finally, in $6, we offer numerical evidence for two geometries: (a) a submerged 
(two-dimensional) circular cylinder, and (b)  a (three-dimensional) Wigley hull; we use 
two different time-domain computational methods. The direct simulation results are 
well predicted by the present asymptotic analysis. 

2. The initial-boundary-value problem 
We consider the time-dependent wave resistance of a floating body accelerating 

impulsively from rest to a constant velocity U .  We choose a right-handed Cartesian 
coordinate system o-xyz with the (x,y)-plane in the undisturbed free surface, the 
x-axis pointing in the direction of the velocity U ,  and the z-axis vertically upwards. 
This coordinate system translates at forward speed U and is fixed in the body for 
time t 2 0. 

We assume the fluid to be incompressible, homogeneous and inviscid, and its 
motion irrotational. The flow can then be described by a velocity potential: 

(2.1) @(x, t )  = -Ux + @(x, t )  

where @ represents the body disturbance potential. The potential, di, satisfies Laplace's 
equation, V2@=0, within the fluid and vanishes at deep water, V@ + 0 as z -, -a. 
For small surface waves, the linearized free-surface condition can be written as : 

where g is the gravitational acceleration. The kinematic boundary condition applied 
on the submerged body surface, SB,  is 

where n=(n,,n,,n,) is the unit normal out of the body. At t=O, the initial conditions 
are 

a 
@(X,O) = -@(x,Oj a t  = 0 on z = O .  

The initial-boundary-value problem for @ is completed with the imposition of an 
appropriate radiation condition: in this case a physical requirement that waves do 
not appear far upstream of the body. 

We note that the steady-state, i.e. frequency-domain, formulation of the above 
problem, the so-called Kelvin-Neumann problem, is shown to possess a unique 
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solution (Kochin 1937; Dern 1980; Maz'ya & Vainberg 1993; Quenez 1995) for 
the case of a deeply submerged body. The extension of this result to more general 
geometries is, however, not yet available. In the present initial-boundary-value 
problem context, the fundamental issue is the large-time behaviour of the solution, 
which is the subject of the present analysis. In particular, it is a priori unknown 
whether the solution is bounded as t -+ GO (see De Prima & Wu 1956; Akylas 1984). 
We shall show (54) that for the present case of a body impulsively started and reaching 
a steady velocity, the solution is bounded and the transient oscillations decay at a 
much more rapid rate than that of a constant-strength single source. 

3. Single-source solutions 
We construct the solution of the general problem using a wave-source distribution 

on the body surface. In order to understand the behaviour, particularly at large 
time, we pursue in this section the solutions of the single source and their asymptotic 
behaviour for t >> 1. 

Consider a single point source of general time-dependent source strength a(z), 
-GO < z d t, fixed in the (moving) frame at x'. The associated velocity potential at a 
field point x is denoted by Y (x, t ;  x', o(z)). The potential Y is harmonic everywhere 
in the fluid except at the source position. In addition, Y vanishes at large depth and 
satisfies the linearized free-surface condition (2.2) as well as the far-field radiation 
condition. The solution Y can be derived using classical transform techniques (see 
Wehausen & Laitone 1960). 

3.1. Two-dimensional sources 
In two dimensions, we write the solution of Y in the conventional form: 

(3 Y ( x , t ; x ' , o ( z ) )  = o(t)ln 

a(z) cos[k(x - x') + kU(t - z)] sin[(gk)ll2(t - z)] dz, (3.1) 

where r2, r:=(x - x')* + ( z  f z')~. For later analyses, we rewrite (3.1) by expressing the 
trigonometric functions in complex exponential form: 

where w=i(x - x') + ( z  + z'), S21,2(k)=kU & (gk)'12, and C.C. denotes the complex 
conjugate of the preceding term. Changing variable with k=m2, and manipulating the 
range of integration, it follows that 

Since our objective is to obtain the behaviour of solutions near the body (e.g. for the 
wave resistance or wave elevations) at large time, it is useful to expand in advance the 
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single-source solution Y for Ix - x'l /Ut  = o(1) for t >> 1. Given ~ ( z ) ,  the asymptotic 
expansion of Y can be obtained from (3.3) using the method of steepest descent. 
For later use, we summarize the results for three special cases of ~ ( t ) .  The detailed 
derivations are given in Appendix A. 

3.1.1. Case I: a(z) = Ofor z < 0, o(z) = 1 for 0 < z < t 

Yl(x, t ;  x') at large time t can be expanded as 
For a source of constant strength 1 for 0 < z < t, the potential Y(x, t ;  x', C) = 

e-l".t 

Yl = Gl(x; x') + C1 -etiV? + c.c. + 0 (g ) , t -+ co , (3.4) 

where the wavenumber IC = g/(4U2) and the constant C1 = 8(7~U/g)~ /~  ein/4. Here GI 
is independent of time and given by 

where ko = ~ I C  and Cauchy principle-value integral is indicated. Note that GI is 
the well-known steady forward-speed (Kelvin) Green function (Wehausen & Laitone 
1960). 

3.1.2. Case IZ: a(z) = 0 for z < to ,  G ( ~ ) = T - ' / ~  e --i'uc' for to < z < t 
If a source is brought into existence at t = to with a varying strength t-1"2e-iwct, 

w,=g/4U, the resulting potential Y (x, t ;x ' ,  G )  = Y~(x,  t ; x ' )  at large time t can be 
expanded as 

as t + co, where * denotes the complex conjugate. Here the constants C2, c2, and e2 
are respectively given by 

and 

(3.8) 

where Y is the gamma function and 10 = k0Ut0/2. The time-independent function G2 

has the following form: 

dL a3 

22 = eia/4(2n)1/2 Lo (cos i - i sin , 

where ~ = k ~ / ' ,  m1,2=m0(,b f 1)/2, and $ indicates that the path of integration goes 
below the pole. The contour L extends from -co to +co in the complex m-plane and 
is indented to pass below the pole at m=ml and above the pole at m=-m2. 

We remark that in the present case of a source strength oscillating at the critical 
frequency uC, the potential is O(t' /2) larger than the source itself, as shown in (3.6). 
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3.1.3. Case 111: a(z) = q(z)  # Ofor z < t o ;  ~ ( z )  = Ofor z 2 to 

Y (x, t ; x', 0 )  = Y3(x, t ; x', q )  has, at large time t, the form 

Y. Liu and D. K .  P. Yue 

If the source of strength q ( ~ )  vanishes after a finite time to, the resulting potential 

e-'"ct 

t1/2 
Y3 = C3-eKq' + C.C. + 0 t + m ,  (3.10) 

where the constant C3 is given by 

C3 = (nj~,U)'/*e-'"/~ lti q(z)eioCz dz . 

3.2. Three-dimensional sources 
In three dimensions, the solution for Y can be expressed as 

(3.11) 

u(~t )e - i [ (gk) ' /2+kUc~~ 017 d a - e -~ t (gk) ' /~  1: ~(z)ei[(gk)"*-k~cos~I~ d z} dk + c.c., 

(3.12) 

where R2, Rt = (x - x ' ) ~  + (y - Y ' ) ~  + ( z  f z ' ) ~ ,  m(8) = 5 cos 8 + (y - y') sin 0, and 
t = x - x' + Ut. Reducing the range of integration from (-n,n) to (0, n/2) and 
changing variable with k = m2, we can rewrite (3.12) as 

Y ( x , t ; x ' , o )  = o(t)  - - - (i d,) 

(3.13) 

where x(m, 0) = rn2 cos[rn2(y - y')  sin 0]em'(z+z')+1m2~cosB. 
Similar to that for a two-dimensional source, the large-time expansions of Y can 

again be obtained from (3.13) using the method of steepest descent. Large-time 
asymptotic results analogous to those in $3.1 can again be obtained for three specific 
source variations ~ ( t )  which are required in the later analysis. The derivations and 
results for the three-dimensional cases are given in Appendix B. 

4. Time-domain analysis 
In this section, we obtain the time dependence of the velocity potential @ ( x , t )  

for the body by solving the initial-boundary-value problem in the time domain. In 
a source formulation, we construct @ in terms of a time-dependent wave-source 
distribution over the body. Upon satisfying the requisite body boundary condition, 
the source strength at any point on the body at any time t is governed by an integral 
equation over the body which involves convolution over all time z < t of the body 
sources. 

The key part of the asymptotic analysis is to obtain the large-time solution 
behaviour due to the convolution integral. To facilitate this, it is useful to express 
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the body sources as a sum of separate components based on their time dependence: 
(i) a time-independent component ( 5 )  ; (ii) an unsteady component (6) which is zero 
after some time t > to ;  and (iii) an unsteady component (6) which is non-zero only 
for t > to. Much of the analysis involves working out the large-time asymptotic be- 
haviours of the single-source solutions Y corresponding to the convolution of these 
source components and are summarized in $3. Making use of Y ,  one then obtains 
from the body integral equation the large-time dependence of the source distribution 
as well as the velocity potential. 

For the sake of clarity, we present the analysis in detail only for the case of a two- 
dimensional body. The extension to three dimensions follows in a straightforward 
manner and is outlined at the end of this section. 

We construct the solution for the velocity potential in terms of a source distribution 
on the two-dimensional body (Lunde 1951; Ursell 1980): 

where L‘ = U 2 / g ,  o(x’,~) represents the source distribution on the body, and, for a 
surface-intersecting body, o+(z) represent the source strengths at the two intersection 
points, x’+=(x’,,O). Note that for the surface-intcrsecting case, the form of (4.1) 
is chosen so that in the steady-state limit, it takes the ‘least-singular’ form given by 
Ursell(l980) for the Kelvin-Neumann problem. It is known that other supplementary 
conditions can be applied for the uniqueness of that problem (see e.g. Suzuki 1981). 
As is evident from the analysis that follows, such conditions do not affect the present 
results for the long-time behaviour. 

Decomposing the source strength into steady and unsteady components, we have 

o(x’, z) = 5(x’) + qx’, z) (4.2) 

in which the time-dependent part 8 is generally expected to vanish at large time. 
After substituting (4.2) into (4.1), the velocity potential @ can be expressed as 

@(x, t )  = 8(d) Y 1 (x, t ; x’) ds‘ + Y ( x ,  t ; x’, i f (xr ,  z)) dd .1 h, 
-[[a- Y 1 (x, t ;  x’-) + Y (x, t ; XI-, C-) + r?+ Y 1 (x, t ; XI+) + Y (x, t ; x’+, 5+)3. (4.3) 

For convenience in the later analysis, we further split 8 into two parts: 

E ( i ,  7) = qx’, z) + 6(x’, 7) (4.4) 

where 6=H(to - z)C(x‘,z) = q(x’,z) and $=H(T - to)C(x‘,z), and H is the Heaviside 
function. The velocity potential can now be written in terms of the single-source 
potentials of 53 as 

-“8-’Y&r,t;x’-) + Y ~ ( X , t ; X ’ - , q p )  + Y ( x , t ; x ’ - , a - )  

+a+’Y1(x,t;x’+) + Y&,t;x’+,q+) + Y ( x , t ; x ’ + , 6 + ) ] .  (4.5) 

To determine the time dependence of @, we first substitute the large-time expansions 
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of Yl(x,t;x’) and Y 3 ( x , t ; x ’ , q )  into (4.5) to obtain 
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@ ( x , t )  = lB a(x’)Gt(x;x’) ds’+ / Y ( x , ~ ; x ’ , ~ ( x ’ , z ) ) ~ ~ ’  
SB 

-L‘ [B-Gi (X;X’ - )  + Y(x,~;x’ - ,~- )  + 3+Gl(x;x’+) + Y(x,~;x’+,~+)]  

where the constant 01 is given by 

-G [cia- + c ~ ( x ’ - ) ]  e-lKX’ - L [CIS+ + c3(x ’+) ]  e-iKxL . (4.7) 

It is clear that the large-time transient behaviour of @ is determined by the time 
dependence of the unsteady source distribution 8 and the value of 01. Note that 
(4.6) satisfies all the conditions of the initial-boundary-value problem except that on 
the body. In the following, we carry out an analysis to determine 8 and 01 from 
the integral equation that results from satisfying the body boundary condition. For 
simplicity, we restrict the analysis for now to the case of a submerged body for which 
the point sources at the surface intersection are absent. The case of a surface-piercing 
body with the intersection point sources turns out to be not fundamentally different 
in the present context and will be discussed separately at the end of this section. 

Upon imposing the body boundary condition (2.3) to (4.6), we obtain an integral 
equation for the unknown source strength: 

for all x on the body. According to the definition (4.2), (4.8) can be separated into 
steady and time-dependent components: 

a 
na(x) + iB i ? ( ~ ’ ) ~ G ~ ( x ; x ’ )  ds’ = Un, , (4.9) 

and 

e-iwc t 

+t1/2 arc(in, + n,)eK(ix+z) + C.C. = o (5.g) , t + C O .  (4.10) 

Equation (4.9) governs the steady source a(x) and is associated with the steady 
Kelvin-Neumann problem; it has been the subject of a large number of studies (e.g. 
Wehausen 1973). Since the primary focus of this paper is on the unsteady solution, 
we do not consider (4.9) any further. 

Equation (4.10) governs the asymptotic behaviour of the unsteady source 6. From 
the asymptotic expansions of the single-source pontentials Yl, Y2 and Y3, it is seen 
that for any time dependence of 6, the associated potential Y possesses oscillatory 
behaviour eciwCt at large time. From (4.10), it follows that the leading-order solution 
of 8 must also behave like e-’”ct. In order for the focing term in (4.10) to be formally 
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balanced by terms containing 6, the oscillation must decay at the rate of L-‘ ’~.  It 
follows that the asymptotic expansion for 6 must have the form 

(4.1 1) 

where ,u is complex. Upon substituting (4.11) into (4.6) and applying the large-time 
expansion of Y2(x, t ; x ’ ) ,  we obtain for the unsteady part of the potential: 

eicoc t 

.(x’)G, (x;x’) ds‘ = 
tll2 

as t -+ a, where the real part of the right-hand side is implied. Here fil and 8 2  are 
the Kochin functions defined respectively by 

(4.1 3) 

and 

8 2  = a+ (~2t1’2 + ~ 2 )  iB ,u(x’)eK(-ix’+z’) ds‘ + ~2 , (4.14) 

where the constants y1 and y2 represent effects of the source distributions in (the last 
term in) (4.11) which are higher order in t. For submerged bodies, the constant 01 is 
given by (4.7) without the point-source terms at the surface intersections. 

From (4.12), it is clear that the leading-order time dependence of @ is determined 
by the Kochin functions 81 and p2 as well as the source distribution p(x) .  We remark 
that y1 and y2 should be included in (4.13) and (4.14), because in the large-time 
expansion of Y (x, t ;  x’, a(z)) with a(t) < 0(t-li2), there always exists a term decaying 
like O(t-1i2e-iwc‘) as t + co. 

In order to determine the magnitudes of 81, 8 2 ,  and p(x) ,  we substitute (4.11) back 
into (4.10) and apply the large-time expansion of Y2(x, t; x’) to obtain 

Upon identifying the coefficients of the separate time dependencies in (4.15), we have 

plrc(-inx + nz)eK(-ixSz) = 0 ,  (4.16) 

and 

(4.17) 

We observe that (4.16) must be satisfied for all x on the body, and so the Kochin 
function 81 = 0. 

We are then left with the coupled integral equations (4.14) and (4.17) for the 
unknowns ,u and /32. To decouple the two equations, we follow the procedure 

K ( k + Z )  
a 

x,u(x) + f p(x’ )  % G ~ ( X ; X ’ )  ds’ = -82x(inx + n,)e . 
SE 
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employed in LY. First, we rewrite (4.17) as 
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x') ds' - --(inx P2K . + n,)e K(iX+Z) . 
R 

(4.18) 

We then substitute (4.18) into (4.14) and solve for the Kochin function fi2 to obtain 

p(x')P(x') ds' , 1 -+ co , (4.19) x(a + Y2) 

where the kernel P is 

(4.20) 

with the constant r given by 

r = iB( inx  + nz)eZKz ds , (4.21) 

where IC = g/4U2 = 4w;/g. 
After substituting (4.19) back into (4.17), we obtain a new integral equation for p :  

where the forcing term 92 is 

and the kernel Q is given by 

Q(x; x') = (inx + n,)eK(iX+z)P(x') . 

(4.23) 

(4.24) 

According to Fredholm theory (e.g. Ursell 1968), equation (4.22) in general possesses 
a unique solution except possibly at an enumerable number of discrete values of K: 

where the Fredholm determinant vanishes. For submerged bodies and sufficiently 
small o', such irregular frequencies are known to be absent (see Kochin 1937 for the 
steady problem). Since we are concerned at present with the general K case, we will 
disregard the possibility of such irregular frequencies hereafter. 

Depending on the value of the geometric parameter r ,  there are two possibilities. 
If r # 0, the forcing B = 0 as t --+ co. From (4.22), we obtain that p ( x )  = 0 for 
x E S B  and thus 

(4.25) 

from (4.11). From (4.17) or (4.19), the Kochin function /I2 must also vanish as 
t --+ a. According to (4.12), the transient velocity potential thus decays at least like 
O( t-1, t-le-iwL t ) for t >> 1. 

The asymptotic behaviour of the potentials due to source distributions of 
) on the body can be obtained in a manner identical to that in Ap- 

pendix A, and the details are not presented. The final result is that the O(t-3/2e-iwcf) 
source produces O(t-'e-imct) potential, while the O(t-') source does not contribute 
to it. The resulting potential on the body thus has the asymptote, t-le-imcf~e"(ix+z) 
for t >> 1, where P is the Kochin function associated with the O(t-3/2e-ioct) source 
distribution on the body. Now, at O(t-le-i"ct), there is no forcing and the kinematic 

q t - 1 ,  t-3/2e-imct 
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condition on the body requires that p=O. The oscillatory unsteady potential must 
then necessarily be (at least) one order higher, i.e.0(t-3/2e-iwcf). The final result is that 
the unsteady part of the total velocity potential in (4.12) must obtain the following 
asymptotic form: 

provided that r # 0. 
If r = 0, the forcing in (4.22) reduces to 9? = -(a + y2)ic(inX + n,) eK(lX+’) + 0, in 

general. It f o l l o ~ s  that p + 0 from (4.22), and therefore p2 + 0 from (4.17). According 
to (4.11) and (4.12), the unsteady source distribution 8 and velocity potential thus 
decay like O(t-1/2e-‘wcr) for t >> 1. The asymptotic behaviour of the potential is then 
identical to that of the impulsively started constant-strength point source (Havelock 
1949; equation 3.4). 

If the body is surface-piercing, we proceed by including the effect of point sources 
at the surface intersections in (4.6). After substituting (4.11) into (4.6) and applying 
the large-time expansion of Y2(x, t ;  x’), we obtain 

@(x, t )  = 
elQct 

o(x’)Gl(x; x’) ds’ - d[a_Gl(x; x‘-) + B+Gl(x; x’+)] + ,,,iPle K(-lY+Z) .i 
1 ~(x’)G~(x;x’) ds‘ - l [~-G~(x;x’ - )  + ~+Gz(x;x’+)] 

(4.27) 

where the Kochin functions p1 and p2 for the surface-intersecting body are defined 
by 

= a* + k2 [ lB p(x’)eK(ix’+z’) ds’ - L (p-eiKxi + p+eiKx; )] + Y 1 ,  (4.28) 

and 

Following the procedure from (4.15) to (4.22), we can again show that if r # 0, the 
source distribution p ( x )  E 0 and the Kochin functions p1=p2 = 0. If r=O, p(x)=O(l) 
and 82=0(1). Thus the same conclusions as for the submerged body obtain in this 
case. 

The foregoing analysis can be extended to three dimensions in a straightforward 
way using the three-dimensional transient single-source potentials (Appendix B). The 
steps are almost identical and are omitted. The transient disturbances associated with 
the impulsive start of a two- or three-dimensional body vanish in the same way but 
with different decay rates. Specifically, we obtain that if the three-dimensional body 
satisfies the geometric condition r # 0, the decay rate is O(t-2,t-2e-ir’@) as t -+ co. 
If r = 0, the decay rate becomes O(t-le-’“’Ct) for t >> 1, again the same as that for a 
three-dimensional impulsively started constant-strength source (Wehausen 1964). The 
geometric constant r is formally still given by (4.21) with SB now representing the 
submerged surface of the three-dimensional body. 

In summary then, we obtain that for a body started abruptly from rest to a constant 
forward speed U ,  the associated transient effects vanish for t >> 1 as O(t-’,t-3/2e-i0~‘) 
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in two dimensions and as 0(tP2, t-2e-iwrr) in three dimensions, provided that the body 
satisfies the geometric condition # 0. Otherwise, the decay rate is an order of 
magnitude slower, - 0(t-'/2e-i'uct) and - 0(t-'e-'"'ct) in two and three dimensions 
respectively. These rates are the same as that for a single impulsively started translating 
constant-strength wave source. Note that the two parameters of the problem - the 
body geometry and the speed U - are combined in a single governing parameter r 
defined in (4.21). Furthermore, this parameter r is the same as that obtained in LY 
for the frequency-domain problem near the critical frequency o,. (That this must 
be the case is obtained readily from the frequency domain, see 9s). The geometric 
interpretation of the condition r # 0 has been expounded in LY and will not be 
repeated here. 

5. Frequency-domain analysis 
The result of 94 can be anticipated from the earlier work of LY who performed 

a frequency-domain analysis of the classical seakeeping problem (a body translating 
with steady velocity U while undergoing small oscillations at frequency o) near the 
critical frequency u = o, corresponding to z = Uo,/g=:. For this problem, the 
single-source Green function is singular at w, (Haskind 1954; Wehausen & Laitone 
1960), a fact directly related to the slow decay in time of the o, oscillations in the 
corresponding impulsively started constant-strength translating source. LY showed 
that, for a general class of bodies satisfying the geometric condition r # 0, a 
finite solution exists as z + $. It should then follow that the transient decay of the 
corresponding time-domain problem should also be more rapid for this class of bodies 
than that for the Green function. In this section, we apply the Fourier transform to 
recover the conclusions obtained in the direct time-domain analysis in $4. 

We write the time-dependent potential @ as an inverse Fourier transform from the 
frequency domain: 

I r a  
@(x, t )  = & jo 4(x, w)eiot d o  + C.C. , 

where 4 is the Fourier transform of @. It is clear that the potential @ at large time is 
dominated by the integration in the neighbourhood of the end point o = 0 and the 
singularities of 4 on the positive maxis. 

To obtain the behaviour of 4, we apply the Fourier operator [Tdt e-iW' to the 
initial-boundary-value problem of @ in $2. After taking account of initial conditions, 
we obtain a boundary-value problem for I$ which is the classical (frequency-domain) 
seakeeping problem with body boundary condition given by 

where 6(0) is the Dirac delta function. Based on (5.2), we can write 4 as 

+(-&w) = u q o )  + F 40@, co) 9 (5.3) [ 1iI 
where 40 is the solution with the body forcing &&/an = n,. 

For the seakeeping problem, it is known that +,, is regular except at the critical 
frequency, o,, where the (frequency-domain) Green function is singular. For bodies 
satisfying the geometric condition r # 0, LY showed that 40 is actually bounded 
at co,. Despite this, the integration in (5.1) near o, may still dominate the transient 
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behaviour of @ at large time depending on the smoothness of 4o at 0,. Neglecting 
exponentially small contributions, we can rewrite (5.1) as 

@(x, t )  - { d'.r+'} [nd(w) + 4 40(x,o)eiW' d o  + c.c., t >> 1 , (5.4) 
271 a,-€ 

where E is a small number. The integrals in (5.4) can be evaluated upon obtaining 
the explicit dependence of $0 on o. 

5.1. Two-dimensional bodies 
For the behaviour of $0 at low frequency, we expand the frequency-domain wave- 
source Green function, G(x; x', co), about o = 0 to obtain 

(5.5) 

where Goo and Go1 are independent of w.  Expressing the potential in a source 
formulation, it follows directly that 40 must have a similar expansion: 

K 1 , 

G(x;x',W) = G ~ ( x ; x ' )  + OCO,(X;X') + O((u2), w << 1 , 

d O ( X ? O )  = 4m(x) + W d O l ( X )  + W2) , (5.6) 

where again #oo and $01 are independent of w.  

can be formally expressed as 
Near the critical frequency w,, LY derived an asymptotic expression for 40 which 

lo, - w (  K 1 ,  (5.7) 

where the function f and the constant d are independent of frequency a. If r # 0, 
$0 is bounded, but its first derivative (with respect to w )  possesses a square-root 
singularity at w = o,. If r=O, 4o itself has a square-root singularity at w=w,. 

Upon substituting (5.7) and (5.6) into (5.4), and integrating by parts, we obtain 

If r = 0, the leading behaviour of the unsteady solution is dominated by the first 
integral, which can be evaluated to give 

@(x, t )  - ~ 4 , ( x ) / 2  = o (t-'/2e-ioct) for r = o . (5.9) 

If r # 0, the first integral in (5.8) is regular and can be evaluated by expanding the 
integrand in a Taylor series around o=O. The leading behaviour is obtained to be 

@(x, t )  - ~ 4 o o ( x ) / 2  = o (t-', t-3/2e-iwJ) for r # o . (5.10) 

Thus the large-time asymptotic behaviour of $4 is exactly recovered. 
It remains of interest to understand the manner in which the leading algebraic 

behaviour changes in the limit r -+ 0. This would be relevant for a problem with 
small but non-zero r as in the case, for example, of small forward speed or deep 
submergence. In this case, the conclusion above and at the end of 94 for (1 >>) r # 0 
remains formally valid as t + 03, although a discontinuity in the behaviour apparently 
exists between this and the case of r = 0. A useful consideration, then, is of the case 
of r << 1 and large but finite t >> 1. 
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For this case, the integral in (5.8) can be evaluated although special care is needed 
since the Taylor expansion around o=O does not converge in the limit r --+ 0. Upon 
shifting the integration path to the line of steepest descent, changing variable with 
g=(wt)'12 and defining d2cofr2 - r2, the integral in (5.8) becomes 

(5.1 1) 
1 - - t-1/2 [ e-aL 1-)1 e-@* de + o(gt)l'* 

[l + 0(99t)1'21 , = 1 1/2t-1/2e-lt 
271 

for t >> 1 and r2t << 1. 
Thus, the asymptotic behaviour of the unsteady potential can be expressed as 

~ ( x ,  Z) - ~4W(x)/2 = $c1/2t-1'2e-gte-1Wc' [l + 0(9&)112] + 0 (t-', t-3/2e-'"'ct) , (5.12) 

for r2t << 1, t >> 1. As I' + 0 (for finite t) ,  Bt vanishes in the first term which then 
becomes the leading algebraic term giving the asymptotic behaviour - O(t-1'2e-1Wrt). 
Hence, we recover the formal result for I' = 0. For finite B - r2,  the first term on 
the right is exponential, and we recover the previous result for r # 0. Thus there is 
no ambiguity in general in the two limits r -+ 0 and t -+ cn depending on whether 
9% -+ 0 or not. Similar conclusions are also obtained for three-dimensional bodies 
(see $95.2 and 6.2). 

5.2. Three-dimensional bodies 

As in two dimensions, the small-frequency expansion of 4 0  can be obtained by 
expanding the three-dimensional (frequency-domain) wave-source Green function 
(Wehausen & Laitone 1960) about w = 0. The result can be expressed in a symbolic 
form: 

(5.13) 

For the asymptotic behaviour of 4 0  near wc, we follow the procedure outlined in $6 
of LY. The solution can be formally expressed as 

4 0 ( 4  w )  = 4oo(x) + W 2 4 0 l ( X )  +. . f > W K l .  

where the function F and the constant D are independent of o. Clearly, $0 is bounded 
as w + o, if r # 0. Otherwise, it has a logarithm singularity at w=a,. 

If I'=O, substitution of (5.13) and (5.14) into (5.4) gives 
r e  

Using contour integration, the integral in (5.15) can be shown to be O ( l / t )  as t -+ m. 
Thus, for r=O, the transient velocity potential decays like O(t-le-""cL) for t >> 1. 

If I' # 0, we substitute (5.13) and (5.14) into (5.4) and use integration by parts to 
obtain 
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for t > 1. After using the method of steepest descent, we have 
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+ o (t-2,t-2e-1'oJ), t >> 1. (5.17) 

The integral in (5.17) has a form of Ramanujan's integral (Erdilyi 1981, p. 219) and 
can be shown to vanish exponentially as t -+ 03. Equation (5.17) can be formally 
expressed as 

(5.18) 

where, in this case, 8 - e--D/KZlrl corresponds to the value of e at which the real 
part of the denominator in the integrand in (5.17) vanishes. Clearly, 9=0 for r = 0 
and the leading behaviour of (5.18) reduces to O(t-'e-lwCt). For r # 0, 8 is positive 
and increases monotonically with )r 1, the decaying exponential in (5.18) vanishes as 
t -+ co, and the unsteady potential decays like O(t-2,t-2e-iu'ct). For large but finite 
t ,  the first term on the right-hand side of (5.18) becomes the leading algebraic term 
if r -+ 0 (Bt -+ 0), and the solution decays only as O(t-le-iwJ). In any case, the 
time-domain analysis results of $4 are recovered. 

~ ( x ,  t )  - U ~ O O ( X ) / ~  = o [ec'"'c' (t-le-gt, t-2) , t-2] , t > l ,  

6. Numerical confirmation 
As we pointed out, the decay rate of transients associated with body accelerations 

has immediate implications for testing tank experiments as well as time-domain 
simulations. To illustrate this and to provide numerical confirmation of the analysis 
results, we perform direct simulations in the time domain to determine the resistance 
of a body started impulsively from rest to a constant forward speed. Specifically, 
we consider two different geometries using two independent time-domain simulation 
programs : (a )  a submerged two-dimensional circular cylinder using a spectral method ; 
and (b)  a three-dimensional ship hull employing a transient-wave Green function panel 
method. 

6.1. Unsteady resistance of a submerged cylinder 
We consider the time-varying resistance F(t) on a two-dimensional submerged circular 
cylinder, radius a, centre submergence h, started impulsively from rest to constant 
forward speed U .  The geometric parameter r is obtained to be r=27~ae-~~~Y1(27ca) ,  
where 9l is the modified Bessel function. Thus r is always positive. 

The initial-boundary-value problem is simulated in the time domain from rest. The 
numerical method we use Is a simple extension, to include forward speed, of the 
spectral method of Liu, Dommermuth & Yue (1992) for wave-body interactions. 
The free surface and body surface are represented by dipole and source distributions 
respectively which are written separately in terms of Fourier series (with N F ,  N B  

modes). The method exhibits exponential convergence with NF and NB. In addition, 
with the use of fast-Fourier transform, the computational effort is only linearly 
proportional to NF (typically N B  << N F )  so that in practice a large value of N j  (say 
up to 0(103)) can be used to obtain an extremely high accuracy (Liu et ul. 1992). 

Figure 1 shows the comparison between the numerical result and the fitted asymp- 
totic solution based on (4.26) for the unsteady portion of the resistance, $(t)  - 9, 
for Froude number F,. = U/(ga)Ii2 = 1 and submergence h/a = 2. The direct 
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FIGURE 1. Comparison between the asymptotic prediction (6.1) (-) and direct time-domain 
simulation result (- - -) for the unsteady wave resistance on a submerged circular cylinder, radius a, 
centre submergence h, accelerated abruptly from rest to a speed U .  The parameters of the problem 
are F, = U / ( g a ) ’ / 2  = 1 and h / a  = 2. 

time-domain simulation uses NB=64, N~=2048, in a computational domain of length 
64L0 where Lo = 271U2/g is the wavelength of the steady wave. With these and 
the time integration (fourth-order Runge-Kutta) parameters chosen, the result for 
the resistance is converged to at least 4 significant decimals. The fitted theoretical 
solution corresponding to (4.26) is given by 

F ( t )  -s a1 a2 _ -  - +- cos(co,t + u3) , 
P V 2  o,t (co,t)3/2 

with ul NN -0.033 and a2 NN 1.687. The comparison between the theoretical asymptotic 
prcdiction and direct numerical computations in figure 1 is excellent, and the results 
are graphically indistinguishable for m,t >- 30. 

As a further confirmation, we check the predicted asymptotic behaviour for the 
source strength (4.25) against direct simulation. Figure 2 shows the comparison for 
the first circumferential Fourier mode of r?(x,t), which we denote as r?~( t ) ,  for the 
same case as figure 1. The theoretical curve for 61(t)/U has the same form as the 
right-hand side of (6.1) with now al w -0.003 and a2 = 0.121. The curves are very 
similar to those of figure 1 and the comparison is again excellent. 

6.2. Resistance of a ship started from rest 
As an example of a three-dimensional surface-piercing body, we consider the unsteady 
resistance F(t)  of a Wigley hull (Gerritsma 1988), length a, beam b, and draught h. 
The half-beam of the hull is given by y / b  = f(1 - 4x2/u2)(1 - z2/h2)/2. For this 
mathematical hull, we calculate r = a b [ ( l  + 2 ~ h ) e - ~ ” ~  - 1 ] / 3 ( ~ h ) ~ .  For the numerical 
simulation, we use a code based on a time-domain three-dimensional transient-wave 
Green function panel method of Lin & Yue (1990). The method employs a piecewise 
linear quadrilateral panel discretization of the hull surface with constant source 
strength over each panel. 
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FIGURE 2. Comparison between the asymptotic prediction (cf. (6.1)) (-) and direct time-domain 
simulation result (- - -) for the first circumferential mode of the unsteady source distribution on a 
submerged circular cylinder, radius a, centre submergence h, accelerated abruptly from rest to a 
speed U. The parameters of the problem are F, = U/(ga)1/2 = 1 and h / a  = 2. 

Figure 3 plots the unsteady part of the resistance for the case of b/a=O.l, 
h/a=0.0625, and Froude number F,.=U/(g~)”~=0.125. The time-domain simula- 
tion uses N B  = 434 panels on the body and 80 (trapezoidal integration) time steps 
per critical wave period T, = 271/0, = 87rU/g. The numerical scheme achieves only 
algebraic (second-order) convergence with N B  and the displayed result is converged 
to O(10-2). The fitted asymptotic prediction corresponding to (5.18) is given in this 
case by 

with a1 m 6.1 x and a2 m 0.02. The agreement between the analytic and numerical 
results is again very good, and confirms the 0(r2) approach to steady-state resistance. 

Finally, we remark that in the large-time asymptotic analysis of $4, exponentially 
small terms are all neglected. The results are then formally valid for t + co. The time- 
dependent resistance in general also contains w, oscillatory terms with exponential 
time-dependent amplitudes of the form t-de-B‘ (Maskell & Ursell 1970; Newman 
1985), where d = (1) for two (three) dimensions. These amplitudes are an order of 
magnitude slower than those for the oscillations in (6.1), (6.2). In practice, the value 
of B may be quite small, and the resistance is dominated by the t-& behaviour for 
fairly large finite time t < T given by Te-g7’ = O(1). In Fourier analyses ($51, we 
obtain that B - ( I c T ) ~  in two dimensions and &l is a monotonic function of r in 
three dimensions where &l vanishes for r =O and increases with increasing absolute 
value of the dimensionless parameter X G u2r. 

For the Wigley hull, we calculate that 

1x1 = ab[l - (1 + h/2~F?)e-~/~”~:] /3h~ . 

Thus, 1x1 has the maximum value of ab/3h2 at F,=O and decreases monotonically 
with increasing Fr. For Fr >> 1, 1x1 approaches zero as F,-4. To illustrate the 
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FIGURE 3. Comparison between the asymptotic prediction (6.2) (-) and direct time-domain 
simulation result (- - -) for the unsteady wave resistance on a Wigley hull, length u, beam b, 
draught h, accelerated abruptly from rest to a speed U .  The parameters of the problem are 
Fr = U/(g~)'/~=0.125, b/a=O.l, and h/u=0.0625. For reference, the envelope of (6.2) (- . -), 
given by the asymptote - t r 2 ,  is also plotted. 

exponential time-dependent oscillatory behaviour, we perform the simulation for a 
different speed given by F,=0.3 (with a reduction in the previous value of 1x1 for 
figure 3 by a factor of about 8). The result for the unsteady resistance is shown in 
figure 4. In this case, an asymptotic expression of the form (6.2) will not match the 
numerical time history which is dominated by behaviour of the form 

= cos(o,,t + a3) 
F ( t )  - 9 

pgabh w,t 

A fitted curve based on (6.3) with al w 2.4 x and B w 2.8 x 10-3m,, is plotted in 
figure 4 which compares quite well with the numerical solution. In this case, we find 
that the algebraic decay rate of (6.2) becomes dominant only after t > O(lOOT,). 

7. Summary 
We study the decay behaviour of wave transients associated with the initial accel- 

eration of a body from rest to a constant forward speed. The canonical problem of 
an impulsive start (step function velocity) is considered although the results are appli- 
cable to arbitrary (finite-duration) accelerations. We write an initial-boundary-value 
problem for the velocity potential which is represented as a distribution of transient 
wave sources on the body surface. The source strength distribution, which is time 
dependent and a priori unknown, is governed by an integral equation on the body in 
order to satisfy the body boundary condition. We perform an asymptotic analysis of 
this integral equation to obtain the large-time behaviour of the source strength and 
thus the total solution. 

The time-domain analysis shows that for a general class of bodies satisfying a 
simple geometric condition r # 0, the unsteady part of the solution decays like 
~ ( ~ - l ,  t-3/2 e -iw,t ) and O(t-2,t-2e-ioct) as t --f respectively for two- and three- 
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FIGURE 4. Comparison between the asymptotic prediction (6.3) (-) and direct time-domain 
simulation result (- - -) for the unsteady wave resistance on a Wigley hull, length a, beam b, 
draught h, accelerated abruptly from rest to a speed U .  The parameters of the problem are 
F, = U / ( g a ) 1 / 2  = 0.3, b/a  = 0.1, and h/a  = 0.0625. For reference, the envelope of (6.3) (- . -), 
given by the asymptote - t-1e-0.0028wc*, is also plotted. 

dimensional bodies, where oC=g/4U is the critical frequency. When r = 0, for 
which the single transient translating source is a special case, the decay rate of 
the w, oscillation is an order of magnitude slower and the solution behaves like 
0(~-1 /2~- iw . r  ) and O(t-ki"cf) in two and three dimensions respectively. These results 
are also recovered from the frequency domain after making use of the known 
behaviour of the (frequency-domain) seakeeping solution near the critical frequency 

The case of 0 # r << 1 (for example a deeply submerged body) is of some 
interest since there is an apparent discontinuity in the leading solution behaviour 
for r =,# 0 as t + co. Further analyses (and numerical results) for r + 0 but 
finite t >> 1 reveal the role of a time algebraic-exponential decaying term of the form 

non-zero and increases monotonically with Irl > 0. As r + 0, at -+ 0 for finite 
t, and the leading algebraic behaviour is given by rd. For r # 0 and t + co, 
this term is (exponentially) higher order. Thus, the formal conclusions above are 
recovered. 

As an illustration, we perform direct time-domain numerical simulations for two 
different geometries (a two-dimensional submerged body and a three-dimensional 
floating body) and compare the results to theoretical predictions. The unsteady 
behaviour of the solutions completely confirms the asymptotic analyses and illustrates 
the possibly important practical implications to wave-body studies in the testing tank 
and in time-domain simulations. 

(LY). 

t-de-g(r)t e -im,t , where d = i, 1 for two, three dimensions; B(0) = 0, and B(r) is 
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Appendix A. Large-time expansions of two-dimensional transient 
single-source potentials 

In this appendix, we derive asymptotic expansions, for /x  - x'i/Ut = o( 1) as t -+ 00, 
of the two-dimensional single-source potential Y for three special cases of source 
strength a(t). 

Y Liu and D. K .  P. Yue 

A.l. Case I: ~ ( z )  = Ofop. z < 0, a(t) = 1 for 0 < t d t 
For o(z)=l for 0 < t Q t, the integration with respect to t in (3 .3)  can be carried out 
to give 

1 
k - ko 

Y I (x, t ;  x') = In (k) + 2 f "  (- - f ) ek"+'') cos k ( x  - x') dk 

+2 /I (A - A) em2v!+iQlt dm + C.C. 

where ko=g/U2, mi=ko, and the first integral is independent of time. 
At large time, the second integral in (A l), which we denote by 12, is dominated by 

the integration near m=O. The integration path can be changed to the line of descent 
m=ie/g1i2. (Although this is not strictly a steepest descent path, the leading time 
dependence in (A3) is unaffected). Upon expanding the integrand in Taylor series 
about e=O, it follows that 

where e represents a small positive number. After changing variable with A=@, we 
have 

Note that while the integral in (A 3 )  diverges, its sum with the divergent first integral 
in ( A l )  is convergent (Gel'fand & Shilov 1964) resulting in a constant (non-time- 
dependent) term. 

The last integral, 13, in (A l), possesses a saddle point at m=tg1I2/25 and two simple 
poles at m=O and m. Here c=x - x' + U t  is always positive. Deforming the path of 
integration to the lines of steepest descent given by m1,2= tg'i2/2[ & ~e '" '~ ,  we obtain 

13 = 2 ~ c e ~ ( ~ + ~ ' )  sin h(x  - x') 

For large 5 ,  the integral in (A4) can be evaluated using Laplace's method. By 
expanding the terms inside the square brackets in Taylor series about e=O, it follows 
that 

x 1' [l + O(e2)] e-@ dQ + c.c., 
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as 5 + 03. After carrying out the resulting integral, we obtain 

I3 = 2neko(z+z’) sin ko(x - x’) 

gt2 ] r3/2(n/g)1/2 [ (:>I 
+4exp [i (: - $) + -(z +z’) 1 + 0 - + C.C., < + a. 

4t2 t(2t - U t )  

Substituting <=x - x’ + U t  for (A 6 )  and applying the condition Ix - x’l/Ut=o(l), we 
can expand (A6) in a simpler form: 

I 3  = 2ne ko(z+z’) sin ko(x - x’) 

(A 7) 
+4 (-> n 1/2 ery-iw,t+in/4 

rcut 
where K=ko/4 and oC=g/4U. 

In summary, the expansion of !PI can be written as 

where the constant C1 = 8(nU/g)’12 einI4 and the time-independent function GI is 
given by 

A.2. Case 11: ~ ( z )  = Ofor z < t o ,  ~ ( z )  = t-1/2e-iorr for t o  < z < t 
Substituting cr(z)= z-1/2e-iwcr fo r z > t o  into (3.3), the resulting velocity potential Y2 
for t > to can be written as: 

J -00 J to 

In order to determine the integration with respect to z in (A lo), we first evaluate the 
integral 

where v is a positive constant and W1,2 are regular functions of v and given by 
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After carrying out the integration with respect to z, the first line of (A 10) becomes: 

where q=U(m+m0/2)~. Upon integration by parts, the first integral is clearly O(l/ t) .  
Thus, II reduces to 

After using (A 1 l), we can write the second line of (A10) as 

e-'w<t K em2v' e-'W< t 

t ' / 2  (m + ml)(m - m2) d m + O ( . , 1 > ,  t + a ,  (A151 - 2mo - jc 
where ml,Z=mo($ & 1)/2, vz=U(m + ml)(m2 - m), and the path of integration is 
indented to pass below the pole at m=m2. The integrals inside the brackets have 
neither poles nor stationary phase points for m E (0,a). Thus, they are dominated by 
the integration near the end points. Using the method of steepest descent, it can be 
shown that the integration from the interval near m = 0 is O(l/t), while it is O(l / t ' / ' )  
near m=m2. Omitting some details, we express the expansion of 1 2  as 

as t -+ co. 

of error functions: 
For the third line of (A lo), we can rewrite the integral with respect to z in terms 

where U,=U(m - mo/2)2eix/4. Since the error function tends to zero as m -+ mo/2, 
the integral in (A 17) is regular. At large time, the main contribution to this integral 
comes from the interval near the stationary phase point at m=mo/2. Replacing the 
first error function in (A17) by its series expansion and applying the method of 
steepest descent, we obtain the asymptotic expansion for 1 3 :  

(A 18) 

where l" represents the gamma function. Here the summation can be shown to be 
convergent. 

After using (A 11) for the integration with respect to z, the fourth line of (A 10) 
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can be written as 

I 4  = mo- dm 

where v3=U(rn-ml)(m+m2), and the contour L extends from -a to +a in the 
complex m-plane and is indented to pass above the pole at m=-m2 and below the 
pole at m=ml. Clearly, there are no poles for the integrals inside the brackets. The 
main contribution to these integrals thus comes from the region near the stationary 
phase point (m=mo/2) and the end points of the integration (m=ml, -m2). These 
contributions can be determined using the method of steepest descent. The final 
result can be expressed as 

In summary, the large-time expansion of Y2  can be expressed as 
e-'oct eiuet 1 e-imcr 

Y2 = t'/2 [(C2t1l2 + c2)eKv + Gz(x;x')] + &-eKv* t ' i 2  + 0 (?, i) , (A21) 

where the constants Cz, C 2 ,  and ?2 are respectively given by 

C 2  = -2e-in/4m,-,(n~to)1/' , e2 = eini4(2n)1/2 W2(miU/2) , (A 23) 

and the time-independent function Gz is given by 

00 emZipm em2v* 
dm. (A24) - 2mo $ (m + ml)(m - mz) dm + m o i  (m - ml)(m + rnz) 

A.3. Case 111: ~ ( z )  = q ( r )  # 0 for  T < to;  a(z) = 0 for z 3 t o  

If a source is turned off at z = to, the resulting potential Y3 for t > to can be expressed 
as : 

Assuming q ( z )  to be a smooth and continuous function of T, the integrals with respect 
to T in (A25) are regular. At large time, the integrals with respect to m are then 
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dominated by the integration near the stationary phase point at m=mo/2. Upon using 
the method of stationary phase, we obtain 

(A 26) 

where the constant C3 is given by 

Appendix B. Large-time expansions of three-dimensional transient 
single-source potentials 

In this appendix, we derive asymptotic expansions of the single-source potential Y 
in three dimensions for three special cases of source strength o(t), for Ix - x'J/Ut = 
o( 1) as t -+ co. 

B.l. Case I: a(z) = 0 for z < 0, a(z) = 1 for 0 < z d t 
After carrying out the integration with respect to z in (3.13), we have 

1 1  
Y&,t;x') = - - - 

R R1 
cos[k(x - x') cos el 

k cos2 e - ko 
- 3 Lx'* dO~mek@+z') cos [k(y - y') sin 61 

71 

,i(m2t cos8+mtg'/2) 
4mo inJ2 dQ~mmem2~z+'~ cos[m2(y - y') sin 81 
71 mcose + mo 

,i(m2t; cos 8-mtg'/2) 

dm + C.C. (B 1) cos[m2(y - y') sin 01 mcosQ-mo + ~ ~ ' / 2 d H f m e m 2 ' ; i I . )  7T 

dk 

dm + C.C. 

From (B 1) it is clear that Yl(x ,  t ;  x') is symmetric about y - y'=O. Thus, we only 
need to consider the case y - y' > 0. 

The first two lines of (B 1) are independent of time and thus a part of the steady 
solution. For the integration with respect to m in the third line, we see that there 
exists neither a pole nor a stationary phase point within the range of integration. The 
leading contribution to this integral comes from the end region m E (0 ,~ ) .  Changing 
the path of integration to the line m=ie/g1/2 and making a Taylor series expansion 
of the integrand about e=O, the third line of (Bl) becomes 

In order to evaluate the integrals in the last line of (Bl), we first rewrite it as 
n/2 

I 3  = 2 1 sec 8 [@(il, 0) + 0(c2, O ) ]  dO + C.C. , (B 3) n 

where 11,2 = t cos (3 5 (y - y') sin Q and the function 0 is defined by 
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with 9=m0 sec8. Note that [1,2 are non-negative for 1x -x’]/Ut=o(l) as t + XI. In 
evaluating 0,  therefore, we need to consider the case < > 0 only. From (B4), it is 
seen that 0 is dominated not only by the pole at m=$ but also by the stationary 
phase point at m= tg’/2/21. To obtain the asymptotic expansion of 0 at large time, 
the method of steepest descent is again used. After changing the path of integration 
to the line of steepest descent given by m1,2 = tg1/2/25 f ~ e ~ ~ / ~ ,  it follows that 

~ ( c ,  8) = innge92(z+z’)+i(92r-9tg1’z) 

in which the first term results from the residue at the pole m=9. By use of Laplace’s 
method, we can carry out the integral in (B 5) to obtain 

~(i, 0) = i~~e92(~+Z’)+i(~2i-~tg’/2~ 

Substitution of (B 6) into (B 3) gives 
x / 2  

13 = -4 1 g2 sin[m$(x - x’)] c0s[9~ sin 8(y - d% 

. gt2 gt2  
-1- + -(z +z’) 

+teix/4 [ 411 41: (”> 
/’x’2 

{ . 0 <y2(tg’/2 - 2911) g2(tg’/2 - 2952) 

After plugging and 1 2  into (B 7 ) ,  it becomes clear that the terms inside the brackets 
have neither poles nor stationary phase points for 8 E (O,n/2). Thus the associated 
integral is dominated by the integration near 8=0. Taking the end expansion about 
%=0 and extending the range of integration to infinity, the resulting integral can be 
integrated to give 

(B 8) 

Substituting 5 for (B 8) and writing a Taylor series expansion for /x - x’l/Ut=o(l), Z3 
can be expressed as 

4 2  
13 = -4 1 9* sin[mo9(x - x’)] cos[a2 sin O(y - y’)]e92(z+z’) d% 
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The asymptotic expansion of Yl(x, t ;  x’) is summarized as follows: 
e-iwcL 

t 
Yl(x,t;x‘) = 31(x;x’) + -eKV + C.C. + 0 (‘;Tt), __ t - m ,  (B10) 

where the constant =-2$/ U ,  and the time-independent part $1 is given by 

dk 
cos[k(x - x’) cos 01 

k c0s2 0 - ko 
-9 ln’2 dOfeX(’+’’) cos[k(y - y’) sin 01 

71 

B.2. Case 11: a(z) = 0 for z d to ,  a(z) = Z - k i w C r  for to < z < t 
For a source of varying strength t-’e-lwLt for t > to, the expansion of the resulting 
velocity potential Y2(x, t ;  x’) at large time can be obtained by a procedure similar to 
that in two dimensions (Case I1 in Appendix A). We omit the details and give the 
final result: 

where the constant V 2  = i2&, and @2 and @2 are respectively given by 

and 
e-ll 

@, = -i245rc Irn -dA. 
koUtoj2 

The time-independent function $2 is given by 

(1 + cos q1’2  * 1 
mo , 2 cos 0 M1,2 = 
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B.3. Case 111: ~ ( z )  = q(2)  # Ofor z < to; ~ ( z )  = O J o r  z 2 to 

363 

In this case, Y3(x, t ;  x’, q )  at large time can be expanded as 

(B 18) 

where the constant %?3 is given by 

%?3 = i 2 & ~  [l q ( z )  eiorr dz. 
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